
JDBC

Components of JDBC :

 Main Components :

 1. The JDBC API – Provides various methods and interfaces for easy and

effective communication with databases. (java.sql.*,javax.sql.*)

 DriverManager

 Driver

 Connection

Statement

PreapredStatement

CallableStatement

ResultSet

DatabaseMetaData

Blob

Clob

2. JDBC DriverManager

JDBC Driver manager loads the database-specific driver into an application in order

to establish the connection with the database.

3. JDBC Test suite: JDBC Test suite facilitates the programmer to test the various

operations such as deletion, updation, insertion that are being executed by the JDBC

Drivers or not.

4. JDBC-ODBC Bridge Drivers: JDBC-ODBC Bridge Drivers are used to connect the

database drivers to the database. The bridge does the translation of the JDBC method

calls into the ODBC method call.

JDBC ARCHITECTURE

JDBC Versions(Specifications) :

Versions Of JDBC

 Initially, Sun Microsystems had released JDBC in JDK 1.1 on Feb 19, 1997.

 After that, it has been part of the Java Platform.

The following table contains JDBC versions and implementations:

Drivers for Different Databases

Types of Drivers:

There are 4 different types of Drivers available in JDBC. They are classified based on

the technique which is used to access a Database.

They are as follows:

Type I : JDBC- ODBC Bridge

Type II: Native API Partly Java Driver

Type III: Network Protocol(middleware Server Driver)- Fully Java Driver

Type IV: Thin Driver- Fully Java Driver

Type -1 Driver - JDBC ODBC Bridge Driver

Type -2 Driver - Native API Driver

Type -3 Driver- Network Protocol Driver

Type -4 Driver – Thin Driver

Pros & Cons

1. JDBC-ODBC bridge driver:

JDBC-ODBC bridge driver is a native code driver which uses ODBC driver to

connect with the database. It converts JDBC method calls into ODBC function calls.

It is also known as Type 1 driver.

Advantages:

It can be used with any database for which an ODBC driver is installed.

Disadvantages:

Performance is not good as it converts JDBC method calls into ODBC function calls.

ODBC driver needs to be installed on the client machine.

Platform dependent.

2. Native-API driver:

Native-API driver uses the client-side libraries of the database. It converts JDBC

method calls into native calls of the database API. It is partially written in java. It is

also known as Type 2 driver.

Advantages:

It is faster than a JDBC-ODBC bridge driver.

Disadvantages:

Platform dependent.

The vendor client library needs to be installed on the client machine.

3. Network-Protocol driver:

 Network-Protocol driver is a pure java driver which uses a middle-tier to

converts JDBC calls directly or indirectly into database specific calls. Multiple types

of databases can be accessed at the same time. It is a platform independent driver. It is

also known as Type 3 or MiddleWare driver.

Advantages:

Platform independent.

Faster from Type1 and Type2 drivers.

It follows a three tier communication approach.

Multiple types of databases can be accessed at the same time.

Disadvantages:

It requires database-specific coding to be done in the middle tier.

4. Thin driver:

Thin driver is a pure java driver which converts JDBC calls directly into the database

specific calls. It is a platform independent driver. It is also known as Type 4 or

Database-Protocol driver.

Advantages:

Platform independent.

Faster than all other drivers.

Disadvantages:

It is database dependent.

Multiple types of databases can’t be accessed at the same time.

Steps:

1. Load and Register the Driver

2. Establish a connection

3. Create the statement and execute the statement

4. Process the results

5. Close the connection

Connection (using NOTEPAD)

Installation

To connect java application with the mysql (database, mysqlconnector.jar file is

required to be loaded.

download the jar file mysql-connector.jar

Two ways to load the jar file:

Paste the mysqlconnector.jar file in jre/lib/ext folder

Download the mysqlconnector.jar file. Go to jre/lib/ext folder and paste the jar file

here. (if JRE is not available please in JAVA folder)

Set classpath

There are two ways to set the classpath:

Temporary

C:>set classpath=c:\folder\mysql-connector-java-5.0.8-bin.jar;.;

Permanent

Go to environment variable then click on new tab. In variable name

write classpath and in variable value paste the path to the mysqlconnector.jar file by

appending mysqlconnector.jar;.; as C:\folder\mysql-connector-java-5.0.8-bin.jar;.;

ECLIPSE

Store connector.jar file in some location

Click right click on Project folder,

Chose Build Path

Chose

Add External Archives /Configure Build Path

Configure Build Path

In Libraries, click on Classpath, Add External JARs

Visual Studio Code

Download and Install

Add JAVA extension pack

Chose Explorer

Chose Create JAVA Project

Create JAVA Project :

Then Chose the type of Project and Location

Once the location is selected, Specify the name of the Project, then JAVA project will

be created and by default APP.java file will be created, Next Add jar file in referenced

libraries.

JDBC API

Provides classes and interfaces that are used by Java Applications to communicate

databases.

The JDBC driver communicates with a database for any requests made by a Java

application by using the JDBC API.

The JDBC driver not only process SQL commands, but also sends back the result of

processing of these SQL commands.

JDBC follows write once run anywhere behaviour of JAVA.

The JDBC API is part of Java SE and is available to Java Platform EE.

JDBC 4.0 mainly uses two packages:

i)Java.sql ii) Javax.sql

java.sql package

Also called as JDBC Core API.

Package contains classes and interfaces to perform JDBC operations such as creating

and executing SQL queries.

These classes and interfaces further classified into:

Connection management – establish a connection with database

Database access – Execution of SQL Queries- after connection is established

Data types- SQL Datatypes (Ex: BLOB,CLOB, UDT....)

Database metadata – is used to retrieve info about Database

Exceptions and warnings – handle unwanted exceptions raised by the application

javax.sql package

Also called as JDBC Extension API (supplement of java.sql package).

Which provides Classes and interfaces to access server-side data sources.

 Classified into

 DataSource

Connection and statement pooling – establish number of connections

Distributed transaction – supports accessing of data from multiple servers

Rowsets – is used to retrieve data from a network (java-bean)

Exploring Major Classes and Interfaces

Major classes and interfaces:

DriverManager Class

Driver Interface

Connection Interface

Statement Interface

ResultSet Interface

Statement stmt = con.createStatement();

stmt.addBatch("INSERT INTO COFFEES " +

"VALUES('Amaretto', 49, 9.99, 0, 0)");

stmt.addBatch("INSERT INTO COFFEES " +

"VALUES('Hazelnut', 49, 9.99, 0, 0)");

stmt.addBatch("INSERT INTO COFFEES " +

"VALUES('Amaretto_decaf', 49, 10.99, 0, 0)");

stmt.addBatch("INSERT INTO COFFEES " +

"VALUES('Hazelnut_decaf', 49, 10.99, 0, 0)");

int [] updateCounts = stmt.executeBatch();

Procedure

Module

IN

OUT

INOUT

